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INTRODUCTION 

The wavy flow of thin layers of a viscous liquid was discussed in [I, 2]. The existence 
of nonlinear stationary waves at the surface of a liquid flowing down along a vertical wall 
was shown for the first time in [3]. One chapter of the monograph [4] is devoted to a dis- 
cussion of different flow conditions in falling films. 

The linear problem of the stability of plane-parallel flow with a free boundary was stud- 
ied on the basis of the Navier--Stokes equations in [5-9]. The nonlinear problem was inves- 
tigated in [10-14] within the framework of the equations of P. L. Kapitsa; the Korteweg--de 
Vries equation and equations similar to it were used in [15, 16] to describe the flow in a 
liquid film. Nonlinear flow conditions in a liquid film and nonlinear stability were studied 
in [17-20] on the basis of the Navier--Stokes equations in a long-wave approximation. In the 
two latter works the Landau constant was calculated using a modified Reynolds--Potter method 
[21] and a conclusion was drawn with respect to the absence of long-wave subcritical motions. 

i. Wavy Conditions near the Threshold of Stability 

We consider a layer of viscous incompressible liquid with a density p and a viscosity 
~, flowing down under the action of the force of gravity g = 981 cm/sec 2 along a flat surface 
inclined to the horizontal at an angle X. We shall take as given the mass flow rate of the 
liquid F, defined as the tLme-averaged value of the mass of liquid passing through a trans- 
verse cross section and referred to unit width of the layer. As the scales of length, time, 
and mass, respectively, we take the quantities (v2/g) I/3, (~/g2)~/s, 0~2/g and introduce the 
dimensionlessparameters 

R e  = r / ~ p ,  u = ( T / v p ) ( v g ) - l P ,  

the first of which is the Reynolds number, based on the mass flow rate, while the second 
characterizes the physical properties of the liquid. In such a statement, depending on the 
Reynolds number, the thickness of the layer is regarded as unknown and subject to determina- 
tion. We introduce the Cartesian rectangular system of coordinates 0'x'y, locating its orig- 
in at the bottom of the channel and directing the x' axis downward along the flow and the y 
axis toward the free boundary. We shall be interested in those solutions of the equations 
of hydrodynamics periodic with respect to time and having the form of stationary waves that 
run along the x' axis with an unknown phase velocity c, i.e., solutions depending periodical- 
ly on the time t and the coordinate x'(x = x' -- ct). In this case the Navier--Stokes equa- 
tions are conveniently written in the form of the equations of motion of a continuous medium 
in the directions 

Do = cos % -- T~ -- C/7 x -~ U~x -- V~gx, 

DT ---- - - s i n  % - -  c~= - -  ~ u = x  - -  cu= -+- uu= - -  vv= q -  vT,  

(1.1) 

where D = ~/~y; the subscript x denotes a partial derivative with respect to the argument x; 
u and v are the longitudinal and transverse components of the velocity vector; and a and T 
are, respectively, the normal (~ =--p + 2Dv; p is the pressure) and tangential (T = Du + v x) 
stresses in the liquid film. The first equation of the system (i.i) is actually a definition 
of the quantity T; the second is the equation of continuity; and the third and fourth equa- 
tions express the law of conservation of momentum in projections on the y and x' axes, re- 
spectively. The solution of the system (i.i) must be 2~/k-periodic (k is a given wave num- 
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ber) along the coordinate x. 
y = ~(x) (free surface) the following conditions are satisfied: 

u = v = 0 (y = 0); 

v - (u - c)L: = 0 (y = ~); 

(y = - p a  + % = ( i  + ~ ) - ~  + ~L, (y = ~); 

= a ~ ( i  - ~ ) - ~  (~ = ~), 

At the boundaries of the layer of liquid y = 0 (solid wall) and 

( 1 . 2 )  

( l .3) 

( 1 . 4 )  

(1.5) 

where Pa = const is the dimensionless value of the atmospheric pressure. For wavy solutions 
the meanwith respect to time coinQides with the mean with respect to the variable x; there- 
fore, the condition for the mass flow rate in dimensionless variables assumes the form 

2n/h ~(x) 

Re = - ~  o 

The system (i.i)-(1.6) admits of the known exact solution u = u', v = v', o = o', T = 
T', ~ = ~', described by the formulas 

u '  = sin X(gY - -  O,5f-), v' -= 0,: a '  = - -Pa  4- cos X(Y - -  ~), 

x '  = sin ~(~ - -  y),  ~' = ~,: ~ = (3I/e/sin ~)1/3 ( 1 . 7 )  

and, corresponding to, as can be seen, plane-parallel flow in a layer of thickness ~ with a 
flat free boundary. The problem consists in finding a wavy flow of the liquid differing from 
(1.7). 

Following the method for calculations of the autovibrations of continuous media proposed 
in [22-24], and limiting ourselves to wavy conditions of small amplitude, branching out from 
plane-parallel flow (l. 7), we shall seek the solution of the problem posed in the form 

{U 'V, ( I 'T '  ~ ,C}={Ur , /Y,G' , ' I : r ,~r ,  C0}@ - 2 8ra{Um, Vm, Grn, Trn,~m, Cm}, 
m=t 

~t = [3 (tle o -~ 6e~)/sin X]II 3 = ~ P~,n (6e~) m, 
m=O 

Re = Reo + ~e', ~o = (3Reo/sin Z) u~, tt~ = (gReo 2 sin Z) - u S ,  

( 1 . 8 )  

where ~ > 0 is a small parameter; Reo, co, and ~o are the critical values of the Reynolds 
number, the phase velocity, and the thickness of the layer, determined in accordance with the 
linear theory; and the value of ~, equal to +i or --I, is responsible for the sign of the in- 
crement of the Reynolds number. The value of the latter is previously unknown and is deter- 
mined during the course of the solution of the problem. 

We carry the boundary conditions at y -- ~(x) to the unperturbed boundary y = ~o, expand- 
ing all the functions of the coordinate y entering into (1.3)-(1.5) in Taylor series in the 
neighborhood of the point y -- ~o. We then substitute the expansions of (1.8) into Eqs. 
(l.l)-(1.6) and collect terms with identical powers of the parameter ~. As a result, we ar- 
rive at a series of recurrent linear problems (m = i, 2, 3, ...) 

D u m  = "~m - -  vmx, Ovm = - -umx ,  O c m  = (U - -  eo)Vm x - -  "~,nx + Fro, 

Dvm = (U - -  Co)U,. x + D U v ~  - -  4u~x  x - -  a,~ x + G~n, 

U = sin X(~tog - -  g2/2), u , .  = v,~ = 0 (y = 0), ( 1 . 9 )  

Vm - -  V~mx = K m  (Y = ~o), "V = ~ ~to 2 sin X - -  co, 2 

cm+ ~ m C ~  = Lm(y = ~o), ~:m - -  ~m sin x = Sm(y  = ~o), 

for which it is required to find a solution 2w/k-periodic with respect to x, satisfying the 
the additional condition 

2~/h / 1 t~o 

o f / y  Po 2s in  Z~rn + j '  umdy "~, Qm] y~t~oj dx  = O, ( 1 . 1 0 )  
o 
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flowing out of the condition for the mass flow rate (1.6) and serving, as can be seen from 
what follows, for determination of the mean thickness of the film. Here Fm, Tm, Lm, Sm, and 
Qm are known inhomogeneities depending on quantities with an index less than the number m, 
Specifically, 

f l  = GI = K1 = L1 = S 1  = Q I  = 0 ,  f 2 = UlVl~ - -  V lUlx  , 

G 2 ----- U l U l x  - -  VlUlx - ~  UIT 1 - -  C lUlx  , 

K~ = (~1ul)= - -  c1~1~, L~ = - - ~ D ~ i ,  

F 3 = UlV2~ -~- U2Vlx - -  /) lU2x - -  Y2Ulx  - -  C2Vlx - -  ClV2x @ 5}x 2 s i n  X y v l x ,  

G3 = (UlU2 - -  vlv~)~ + vlT~ -f- v~'q - -  c~u~x - -  c~u:~ ~ 51~ ~ s i n  x ( g u ~  + v~), 

0 [ . i ~Du 1 

__ t_._ s in  E ~  - -  c ~ l - - c l ~ l  
6 

3 2 t ~2D~(y 

Sa = 4 (Ulx~x  + U~.x~x "-}- ~l~lxDUlx) - -  6bt~DT1 - -  ~DTI - -  ~DT. , ,  

~Dus ~ ~ sin X. Qa = ~Ul  + ~lu, + T  - -  T 

F o r  m = 1 ,  we  o b t a i n  a l i n e a r  h o m o g e n e o u s  p r o b l e m  f o r  c a l c u l a t i o n  o f  t h e  e i g e n v e c t o r  
and the critical values of the parameters Reo and co. 

( u l l  

Gl  

"I: 1 

lu~,~ (y)l 

{':,,,(,){ 

We seek its solution in the form 

~,,, (y) 

I, 
�9 ,.~ (y){ [ 
{~,,, J) 

where 8 is a constant, subject to determination, which, without loss of generality, can be 
assumed to be positive (in the contrary case, it would be necessary to shift the origin of 
the reckoning x § x + T/k). An overscore denotes complex conjugation. As a normalizing con- 
dition it is convenient to take ~,~ = i. For such a choice of ~ = 28 cos kx and, conse- 
quently, for small values of ~, the quantity 2~e can be interpreted as the amplitude of the 
waves at the free surface of the liquid. After separation of the variable x we arrive at 
the ordinary differential equations 

DTI,1 

Dul,1 = ~1,1 - -  ikVl,1, Dvl ,~  ---- - - iku~n,  

Do1,1 = i k [ (U - -  co)v1,1 - -  %,1],  

-= i k [ (U - -  co)u la  - -  (~l,1] + 4k2ul,1 ~ D U v l , 1  
(Z.ll) 

with the boundary conditions 

ul,1 = v1,1 = 0 (y = 0); 

ol ,1  ---- - -  cos  Z - -  Y k~, Tl,1 ---- s i n  % (y ---- Po); 

vl,1 : i kV  (y = ~u). 

(1.12) 

(i.13) 
(1.14) 

To construct the conjugate problem, for m = 1 we multiply the first equation of system 
(1.9) by the function A(x, y), the second by O(x, y), the third by r y), and the fourth 
by ~(x, y), and we integrate around the rectangle {04 x ~ 2~/k, 0 ~ y ~ ~o}, using the per- 
iodicity with respect to x (period 2~/k) and the conditions at y = 0, ~o for the quantities 
u~, v~, o:, and T~. We find the boundary conditions for the functions introduced into the 
discussion, requiring the reversion to zero of the terms outside the integral signs, arising 
with integration by parts. As a result, we arrive at the conjugated problem 
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D A  = 4tFxr -~-- (U - -  Co)T x - -  @x, D 0  --  (U --co)O x - -  D U . T  - -  Ax, 

D O =  - -Tx ,  D W = - - A - - q b  x, O = W = 0  ( g = 0 ) ,  A = 0  ( y =  ~0), 

sin %.T -- VO x ~- Y~xx -- cos %.(D = 0 (g ---- ~o), 

which, after separation of the variable x 

{A, O, (P, T}  = e~{~--(y), O(y), ~-(y), r 

and  t h e  i n t r o d u c t i o n o f  t h e  n o r m a l i z i n g  f a c t o r  0 = 1 f o r  y = l~o, 
e n t i a l  e q u a t i o n s  

D~. = ik[O - -  ( U  - -  Co)r - -  4k2,, 

DO = ik[~  - -  ( U  - -  co) ~ ] - D U r  D q o = i k ~ ,  D r  = ik  9 - ~, 

leads to the ordinary differ- 

(l.iS) 

with the boundary conditions 

= r = o (~ = o) ,  o = l (~ = ~o); 

(cos % -k yk~)qo - -  sin ~ ,  = i k V  (g = Ib); 

= o (y = ~ o ) -  

(i.16) 
(i.iT) 
(l.iB) 

3, 4~ 
The condition of solvability of the inhomogeneous problem (1.9), having the form (m = 2, 

(F,nT ~- G.~r e- i~Xdxdy  = (K.,O + Lm~ + S m r  lu=~,e-i~dx,  
0 

(1.19) 

for m = 2 permits the conclusion that c~ = 0 if the value of 

I1 = 0 (Po) --~ (vi,ir + ui,tq~)dy 

differs from zero. The latter inequality was verified numerically and, in the case under 
consideration, was found to be satisfied. The solution of the problem (1.9) (I.I0) for m = 
2 is given by the formulas 

u2 = ~2[y~=,o sin % + u2,0(y) -4:- u2,~(y)e 2~kr -~ u2,=(y)e-21kx],: 

v2 = [~2 [v2,=(y)C~k~ q_ ~,2(y)e-2~kx], 

a~ = ~ - [ - ~ , o  cos z + ~,0(y) + z~,=(y)e ~kx + ~,~(Y)e-'~kd, 

% = [~2[~, o sin Z @ %.o(Y) + %,~(Y) e~  + ~=,~(y)e-~xJ 

g~ = ~ [ ~ , o  + g~,~e~" + ~ , ~ e - ~ ] ,  

h e r e  t h e  c o n s t a n t  g a , o ,  i n t r o d u c e d  a b o v e ,  i s  u n i q u e l y  d e t e r m i n e d  u s i n g  t h e  c o n d i t i o n  ( 1 . 1 0 )  
and  i s  f o u n d  t o  be  

~2,o Ix 2 sin X u2'~ (y) dy + 2Real u~.l (~o) �9 

We f i n d  t h e  r e m a i n i n g  v a l u e s  by  s o l v i n g  t h e  b o u n d a r y - v a l u e  p r o b l e m s  

Du2,o = %,o, u_o,o ---- 0 (y ---- 0), 

Da2, o ~ 5k Im  (Ul , lVl , I )  , D't2, o = 2 Real (Vl,I'~I,1) , 

Oi,o = 2kiV'2 (Y --= Po), %,0 ---- 2 k V  Imul, l  (y - -  IXo); 

Du~,o. = T2,2 - -  2ikv2,s, Dr2,2 -~ - -2 iku i ,2 ,  

D~2,2 = 2 i k [ ( U  - -  co)vs,~ - -  ~,2], D ~,2 = 0, 

DT2, 2 ----- 2ik  [(U - -  co) u2,2 - -  (T2,21 -~  t6k2u2 ,2  -~- DU v2,2 + vi . t~l . f  + ik  (u~.i - -  v2.t), 

(i.2o) 

(i.zi) 
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u~,~ = v~,~ = 0 (y = 0), v~,~ --2ikV~,~ = 2iku~,~ (y = ~o), 

(~,~ + (cos X + 47k ~) ~,~ = k~V ~ + ik s in  X (Y = ~o), 

T~,o. - -  g~,~ s in  X = - - ( 8  k~ -4- ikV)u~,l  - -  ik(cos X + ? k~) (Y = ~to). 

(1.21) 

Then, substituting m = 3 into the conditions of solvability (1.19), we arrive at a com- 
plex equation for determining the two real constants 8 and c~: 

ikc~I 1 + ~ I ~  = ~t2Ia 

solving this, we obtain 

Roal Im 
= 8~ Real (41~) c~ = . (1.22) 

- ' k R e a l ( I i I 2 )  

H e r e  t h e  s i g n  o f  ~ i s  s o  s e l e c t e d  t h a t  t h e  e x p r e s s i o n  u n d e r  t h e  r a d i c a l  s i g n  w i l l  b e  n o n n e g a -  
t i r e ;  t h e  c o e f f i c i e n t s  I 2  a n d  l a  a r e  c a l c u l a t e d  u s i n g  t h e  f o l l o w i n g  f o r m u l a s :  

t t .  

I s  = I4 - -  ~2,0fa, I a  = - -  s i n  X j" [ikg (vi,dP + u i , i ~ )  + v i , t r  dg -t- 
o 

+ [ ik  (u i , i  - -  ~0 s i n  X) O - -  (PDol,l - -  lpDTi,l]y=a,, 
~o 

14 = ~ ( i k~z i  + ~;z~) dg - -  (ikOz a -+ q)z~ + O;zs) [~=~o, 
0 

zi = vi,iuo.,o + 3(ui,iv~,2 - -  u.,,o.vi,i), 

z~ = vLla:2,o -+- vLf~2,o " -+- v.,,ofq,1 ~ ik(ui,iu2, o ~ ui,lu2, ~ - -  vuive,~) , 

z3 --- u.,,o + u:,o. + ~o.,~i,i -r D u i , i  + 0,5(D~i ,1  - -  s in  X), 

z4 = i , 5 ? k  4 ~- 4ika(u,,1 + 2u i ,0  - -  ~ o.Do~,l - -  D o ~  - -  D a ~ o - -  D"Ol,1 - -  0 , 5 D ~ i , 1 ,  

.= ~ - -  - -  -, 0 ,5D~i ,1 .  z~ = 8k (~.,.,o.ui,1 ~- u.,,= + 0 , 5 D ~ i , 0  - -  ~.,,o_D*ia - -  D, . ,  ~ - -  DT~,o - -  D 2 q , i  - -  

As  c a n  b e  s e e n  f r o m  ( 1 , 2 2 ) ,  t h e  v a l u e s  o f  t h e  c o n s t a n t s  8 a n d  c a  a r e  d e t e r m i n e d  a n d  
differs from zero if the following conditions are satisfied: 

Real( Ia~t )  r 0, Rea l ( I r iS )  ~= 0, ( 1 . 2 3 )  

from which we obtain [22, 23] the convergence of the series (1.8) and the singularity (with 
an accuracy to the shif~ x § x + const) for small values of r of the autovibrational condi- 
tions (1.8), responsible for the plane-parallel flow (1.7) and existing in the supercritical 
region Re > Re~ for 6 = + i or in the subcritical region Re < Reo in the case ~ = --i. The 
autovibrations have the form of nonlinear waves, running downward along the flow as a result 
of the positive nature of the velocity co. 

The above-described method was used on an ODRA-1204 computer to make two series of cal- 
culations of secondary wavy flows near the threshold of stability for fixed values of the 
parameters X and y and different wave numbers: X = 45=, Y = 3387; 2) X = 90~, Y = 2903. The 
constant y for the first series of calculations was obtained for water at 20=C (p -- 0.9982 
g/cm ~, ~ = 1.004.10 -~ cm~/sec, T = 72.75 dyn/cm); the values of X and y for the second series 
correspond to the conditions of the experiment of [2] (water 15=C, p = i g/cm a, v -- 1.14.10 -~ 
cm~/sec, T = 74 dyn/cm). Here an investigation was m de of the character of the branching 
of the solutions of the equations of hydrodynamics, both for perturbations of the type of 
surface waves [9] and for shear waves. Previously, numerical integration of Eqs. (i.ii) was 
used to find the critical values of the phase velocity co and the Reynolds number Reo with 
a high degree of exactness; for large values of Reo, due to the rapid growth and the oscilla- 
tions of the solutions of the differential equations the method of differential successive 
fitting was used [25]. The results obtained for the case of surface waves are illustrated 
in Fig. i. The numbers 1 and 2 on the curves indicate that the curve was plotted for the set 
of parameters I or 2. The stability limit corresponding to the appearance of Tollmein-- 
Schlichting shear waves is attained at considerably greater Reynolds numbers. The central 
curve, which in this case has the form of a tongue, is shown in Fig. 2 (X = 45=, Y = 3387). 

We note the existence of the vertical asymptote k = k, (k, = 0.102 in case i and k, = 
0.121 in case 2) on the curve of the dependence Re~(k) for a mode corresponding to surface 
waves; the latter exist only for k < k, and are exponentially damped for k >-k, as a result 
of the stabilizing action of the surface tension. The critical Reynolds numbers Reo(k) rise 
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unboundedly as k + k,, and the phase velocity of the waves approaches the velocity of the un- 
perturbed parabolic flow at the free boundary. 

We note that the calculated neutral curves differ from the analogous curves of [9], 
where different scales of length, time, and determining parameters were selected: The calcu- 
lations in [9] were made for fixed values of the parameter W = YPo, and a dimensionless num- 
ber ~ = kp) -- based on the thickness of the layer was used. 

After finding the eigennumbers,the boundary-value problems (1.11)-(1.13), (i.15)-(i.17). 
(1.20), and (1.21) were solved consecutively using a complex variant of the method of orthog- 
onalization [26] based on an ALGOL program developed in [27, 28], the functionals ~2,o, 11, 
12, and Is were calculated, and the coefficients 6, 8, and c2 were found. Here the calcula- 
tion of the integrals entering into the functionals was reduced to the solution of the Cauchy 
problem with a zero initial condition at y = 0 and was carried out simultaneously with the 
numerical integration of the system of differential equations by the Runge-Kutta method. The 
"superfluous" boundary conditions (i.i~ and (1.18) were not used in the solution of the bound- 
ary-value problems; the exactness of the satisfaction of the discarded boundary conditions 
was determined by the exactness of the assignment of the eigenvalues of Reo and Co: For 
ideally exact values of Reo and Co and ideally exact integration, the conditions (1.14) and 
(1.18) should automatically be satisfied with absolute exactness. This fact was used for 
purposes of control. 

Some of the numerical results obtained are given in Table i. It was found that in the 
case of surface waves, for all wave numbers in the range 0 < k < k,, secondary conditions ex- 
ist only in the supercritical region Re > Reo. The most clearly marked special characteris- 
tics of secondary flow, having the form of surface waves, appear with large Reynolds numbers. 
Curves of some of the components of the solution for this case are given in Figs. 3 and 4 
(X = 45~ Y = 3387, k = 0.1019, Reo = 2900, Co = 200.5, ~ = 8.40"i0 -~, c2 = 4.33"10 -2 , ~2,o = 
--1.41"10 -2 , ~2,2 = --9.40"i0-2-3.91"i0-si); Fig. 3: curve i) Real ui,1, 2) i00 Imu1,1, 3) 
I00 Real vi,1, 4) I0 Im vz, 1; Fig. 4: curve i) 5 u2,o, 2)Real u2,2, 3) i0 Im u2,2. 

Calculations showed that the character of the branching of steady-state flow (1.7) with 
the formation of shear waves is determined by the value of the wave number k. The values of 
the constant B found are shown in Fig. 2 in the form of arrows (X = 45~ Y = 3387); the ar- 
rows are directed upward if the secondary wavy conditions are branched for Re > Reo and down- 
ward in the contrary case. The length of an arrow characterizes the numerical value of the 
constant 8, reverting, respectively, to infinity (zero) at the left-hand (right-hand) end of 
the interval of wave numbers for which the branching is subcritical (see Fig. 2). The rever- 
sion of 8 to zero at the extreme right-hand point k = kma x is due to the coalescence of the 
upper and lower branches of the neutral curve (8 ~ const #kma x -- k as k § kmax-O~; with an 
approach to the left-hand end k = ko of the interval of wave numbers, the denominator Real 
(1112) tends toward zero, so that the value of 6 rises unboundedly: 6 ~ const Ik - kol-I/2 
(k + ko). At these two exceptional points, k = ko and k = kmax, conditions (1.23) are not 
satisfied and the expansions (1.8) lose their force. 
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2. Waves of Finite Amplitude 

The method used in Sec. i for calculating nonlinear waves of small amplitude must be 
limited to some neighborhood of the neutral curve and the question of the applicability of 
the solution found, containing two terms of the expansion, with concrete numerical values of 
the'parameter ~, remains open. The direct numerical method proposed below for calculating 
surface waves reduces the problem to a system of nonlinear algebraic equations and is found 
to be applicable up to Reynolds numbers several times greater than the critical. 

We shall study the motion of a liquid in a movable system of coordinate Oxy, moving along 
an inclined plane with the velocity c, equal to the phase velocity of a wave. In this system 
of reckoning the wavy flow becomes fully established. We write the equations of motion in the 
Gromeko--Lamb form 

OU/~y = V= --  ~, OV/~y = --U~, 
OQlOy = sin % + ~ V  --  H x, (2.1) 

OH/Oy = --cos Z --  ~ U  + ~=, 

taking the following as the dependent variables: U(x, y) is the longitudinal component of the 
velocity (referred to the system of reckoning Oxy); V(x, y) is the transverse component of the 
velocity vector; ~(x, y) is a vortex; and H(x, y) = p -- Pa + (U2 +V=)/2 is the total pressure, 
reckoned from the level Pa" These quantities, together with the function ~(x) describing the 
form of the free surface, are periodic with respect to x with a given period 2~/k and satisfy 
the conditions 

U = - - c ,  V = O  ( y = O ) ,  1 : = 2 V x - - P . ;  

ck 
R e - - ~ U d y - - ~ E  ~ ~dx=O; 

0 0 

(~ - ~) ~ + 4 ~ u ~  = o (~ = ~1; 
H - 0.5 ( u  ~ + v ~) + 2u~  + ~= + v ~ =  ( i  + ~)-s/~=0 (y = ~), 

(2.z) 

(2,3) 

(2.4) 

(2.5) 

equivalent to the relationships (1.2)-(1.6). 

We bring the problem to a system of nonlinear algebraic equations. To this end, we ex- 
pand the functions U, V, ~, and H in power series in terms of the transverse coordinate y, 

M 

{U, V, fl, H} = ~.j {Um (x), V m (x), tim (x), H m (x)} ym, (2 .6 )  
m=O 

limiting ourselves to a finite number of terms, and then we use an expansion in a Fourier 
series, 
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N 

{u~ (x), v~ (x), ~m (x), Lr~ (x), ; (x)) = Z {u~,~, v~,., 
n=-N (2.7) 

~m,n, H~,n, ~n} e~nhx, 
discarding all harmonics with a number Inl > N and simultaneously setting Imqx = 0. The 
latter requirement makes it possible to eliminate arbitrary shifts of the start of the reck- 
oning at the x axis. We note that Fourier coefficients with a negative index--n are obtained 
from coefficients with the index n by an operation of complex conjugation. This guarantees 
the real nature of the sum in (2.7). As the unknowns of the sought nonlinear algebraic sys- 
tem we take the velocity of the wave c and the numbers nn,rO,n, and Ho, n (n = 0, i, 2, ..., 
N), which, taking account of the real nature of ~o, ~x, ~o,o, and Ho,o, gives 6N + 3 unknowns 
in real form. The equations for their determination give the conditions (2.3)-(2.5). In 
actual fact, the equations of motions (2.1), after the substitutions (2.6) and (2.7), re- 
duce to a recurrent system with respect to the numerical coefficients, 

(m § I)U~ +~,~ = iknV~,~ -- Qm,., (m § l)Vm +l,n = --iknUm, n, 
m 

(m + 1) ~m+t,~ = sin ZS~,n - -  .iknH~,n + ~=o <fl '  (x) Vm-s (x)> n, 

( 2 . 8 )  m 

(m + 1) H~+~,~ cos ~8~,~ ~ ~k~Qm,~ --  ~ o  < " \ = -- ~ ~, (x) ~ ~_~ ( x ) / , ,  

Uo,~ = --C6o,n, Vo,= = 0 (n = 0, 1 . . . . .  N; m = 0, i . . . . .  M - -  l ) ,  

which, for designated values of c, rio,n, andHo,n (n = O, i, ..., N), makes it possible to 
consecutively calculate all the coefficients Um, n, Vm, n, ~m,n, and Hm, n with an index m > 0. 
The value of ~m,n figuring in (2.8) is assumed equal to unity if m = n = 0 and equal to zero 
in the contrary case; the symbol < >n denotes a Fourier coefficient with the harmonic exp- 
(inkx); it can be shown that if the functions a(x) and b(x) are segments of the Fourier series 

N a .N  b 

a ( x ) =  ~ a,~e ~n~x, b ( x ) =  ~ b,~e inkx, 
n = - - N  a n = - - N  b 

then the following formula holds: 

! ~' , asbn-s, In " ' Nb, 
<a (x) b (x} >~ = ],=--min(N=,Nb--n ) I<~ ,4 a -r- 

(0, Inl > Na + N~, 

which, using a computer, makes it possible to find the coefficients of the quantities U, V, 
Ux, Vx, etc., in a Fourier series at the free boundary y = E(x), using (2.6) and the Horner 
algorithm for calculating the values of the polynomial. The Fourier coefficients for the 
curvature C(x) = ~xx(l + E~)_a/2 can be calculated using the formulas of a harmonic analysis 
of the periodic function [29]: 

2 N + t  

1 ~ C (x~) e -~nk':~, x~ = ~ (C(x)>n = 2 ( N - h i )  k ( N - ~ l ) '  [ n l ~ N .  
s = 0  

Then, substituting the Fourier expansions found into the left-hand sides of the equalities 
(2.3)-(2.5), we perform the indicated multiplication of the Fourier series, collect coeffi- 
cients with the harmonics exp(inkx) (n = 0, i, 2, ..., N), and equate them to zero in ac- 
cordance with the kind of the right-hand-sides. As a result, this gives in real form a sys- 
tem of 6N + 3 nonlinear equations with respect to such a number of unknowns. 

Fictitious calculations of surface waves were made for X = 90= and different Reynolds 
numbers for values of y corresponding to the experiments of [2] with water (y = 2903) and 
alcohol (y = 530.5, p = 0.79 g/cm 3, v = 2.02"10 -2 cma/sec, and T = 22.9 dyn/cm). Here, in 
the final series of calculations, it was assumed that M = i0 and N = 5; the system of 33 non- 
linear algebraic equations was solved by the Newton method, with approximation of the partial 
derivatives entering into the Jacobian by finite differences. The dimensionless wave number 
was given on the basis of experimental data as equal to 0.036 for water and 0.062 for alcohol. 
Some of the numerical results obtained are given in Table 2. It was found that the mean 
thickness of the film ~o for the wavy downflow of a liquid is less than the thickness of the 
layer for plane-parallel flow (1.7) at the same Reynolds number (the difference D -- ~o is 
positive, see Table 2). This circumstance has been noted in a number of experiments [30]. 
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The calculated dependence of the phase velocity on the Reynolds number for alcohol (solid 
line i) and for water (solid line 2) is shown together with the experimental data of [2] in 
Fig. 5 (the circles represent experiments with alcohol and the crosses represent experiments 
with water); the dashed line is a curve of the dependence c = co + c=(Re -- Reo), plotted for 
the case y = 2903 and k = 0.036 on the basis of the calculations of Sec. i. A characteristic 
profile of a nonlinear wave at a free surface is shown in Fig. 6 (y = 530.5, k = 0.062, M = 
i0, N = 5, Re = 5.07, c = 5.13); the direction of the flow Of liquid is shown by the arrow. 

The author thanks V. I. Yudovich, B. G. Pokusaev, I. R. Shreiber, and the participants 
in a seminar directed by G. I. Petrov for their interest in the work and their valuable 
observations. 
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STABILIZATION OF CONVECTIVE FLOW IN A VERTICAL LAYER USING A PERMEABLE 

�9 PARTITION 

R. V. Birikh andR. N. Rudako~ UDC 536.25 

INTRODUCTION 

The control of the stability of convective motions is one of the problems of applied 
hydrodynamics, since a loss of stability leads to a lowering to the characteristics of a 
number of technical objects (thermodiffusion columns, vertical heat-insulating layers, etc.). 
Some methods for the stabilization of convective flows are discussed in [i]. 

In the present article an investigation is made of the effect of a thin permeable parti- 
tion, located at the interface between counterflows, on the stability of convective flow. A 
special characteristic of this means of stabilization is that a permeable partition, prevent- 
ing the development of secondary motions, in practice changes the profile of steady-state 
flow and processes of molcular transfer. The effect of a permeable partition on the stability 
of a horizontal layer of liquid heated from below and of isothermal fiow with a cubic velocity 
profile was investigated earlier in [2, 3]. 

Perm'. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 
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